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Abstract. A Fokker-Planck description of the time evolution of a K-distributed noise 
process is presented, discussed and taken as the basis of an approximate analysis of the 
correlation properties of the noise. An equivalent set of stochastic differential equations 
is identified and exploited in a numerical simulation of the noise process. 

1. Introduction 

In the past decade considerable progress has been made in the characterisation and 
interpretation of non-Gaussian noise processes in terms of the K-distributed process 
introduced by Jakeman and Pusey [l-31. (For an up-to-date review see [4].) Much 
of the earlier theoretical work concentrated on the static statistical properties of the 
K-distributed process, its infinite divisibility and the limiting processes by which it 
could be derived from random walk models [ l ,  21. More recently Jakeman [3] has 
proposed a model in which coherent scattering from a population of objects subject 
to processes of birth, death and migration (described formally by a coupled set of rate 
equations) is shown, in the limit of a large mean number (fi) of scatterers, to yield a 
K-distributed intensity of scattered light. The analysis of the temporal correlation 
properties inherent in this model is rather delicate, with the limiting A + a3 behaviour 
having to be extracted from the results of involved calculations. Furthermore Jakeman’s 
model does little to suggest a way in which K-distributed noise might be simulated 
and studied numerically on a computer. In this paper an alternative, but essentially 
equivalent, formulation of Jakeman’s model is developed in which the large fi limit 
is taken from the outset in a continuous Fokker-Planck ( FP) description of the processes 
involved. Many techniques for the analysis of FP equations have been developed in 
recent years [5-71 and so can now be applied to the analysis of a correlated K-distributed 
noise process. Here we apply the Mori projection analysis [8,9] and the method of 
adiabatic elimination [ 5 )  to investigate the temporal behaviour of the intensity correla- 
tion function implicit in our model and regain the generalised Siegert result obtained 
by Jakeman [3]. Furthermore the stochastic equivalence of an FP equation to a set of 
stochastic differential equations [ 5 ]  can be exploited so that a possible method for the 
numerical simulation of correlated K-distributed noise can be identified. However, 
before introducing the FP description of a K-distributed process we review the corre- 
sponding descriptions of the birth-death-migration process and the coherent scattering 
process. This will illustrate how the FP equation provides a natural expression of the 
fi + 00 limit of the rate equation formulation and how a description which makes 
reference only to the intensity of the scattered radiation is effectively able to encode 
the phase information implicit in Jakeman’s use of a complex electric field in his 
treatment of the scattering process. 
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2. Birth, death and migration: negative binomial and gamma distributed processes 

The competing processes of birth, death and migration within a population can, under 
suitable conditions, establish a negative binomial probability distribution for that 
population [ 101. Fluctuations in this population are non-Gaussian in the sense that 
their variance is proportional to the square of the mean population A2 (rather than 
linearly dependent upon 13, as for a Gaussian distribution). On adopting the notation 
of Jakeman's discussion [3], we see that P N ( T ) ,  the probability of the population 
consisting of N members at time T,  satisfies the rate equation 

(1) 
dPN - ( 7 )  = CL ( N + 1 )Phi + I ( 7 )  - [ ( A  + P ) N + VI PN ( 7 )  + [ A  ( N - 1 ) + V ]  PN - 1 ( 7 )  dT 

where A, p and v characterise the uncorrelated processes of birth, death and migration 
respectively. For p > A, (1) has the stationary solution 

where (2) is a binomial coefficient, 

a = v / A  

and 

- V N = -  
p - A '  

The non-Gaussian fluctuation property is manifest in the result 

(3) 

(4) 

1 1  
1 =-+-. N 2  

15' a N 
-- 

We now consider the description of the process in the large R limit. To do this we 
introduce the variable x through 

N = Nx. 

As fi becomes large x becomes an essentially continuous variable. In the same spirit 
we define 

8 ( x ,  7)' P N ( T ) = P N ~ ( T )  

so that (1) becomes 

An expansion in inverse powers of then gives 

1 a 1 a 8  
15 a 7  N ax 

(x, T )  = - ( p  - A )  - ( x ~ ( x ,  7 ) )  -- 

ax 
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From (4) we see that all terms shown explicitly on the right-hand side of (7) are 
O( R-2). Finally we scale time by R( t = 7/ N) and note that p + A as N+ 00; from 
(7) it now follows that 9 satisfies 

a 9  a' a - = h - ( x 9 )  + v- ( (x - 1 ) 9 )  
a t  ax2 ax 

which has the form of an archetypal FP equation [ 5 ] .  It is readily verified that the 
static solution of (8) is the gamma distribution 

aa 
B,(x) = - exp( --(rx)xa-I 

r(a) 
(9) 

normalised in terms of the gamma function r. 
The derivation of (8) from (1) is facilitated by the scaling property ( 5 )  of the 

fluctuations and can be compared with the following situation discussed by van Kampen 
[ l l ] ,  Kubo et a1 [12) and others. When making an expansion of a rate or master 
equation in the reciprocal of some large parameter R (the analogue of our fi, and 
frequently identified with the system size) one decomposes scaled variables (our x) 
into a 'macroscopic' part which scales as R and a term representing fluctuations which, 
on physical grounds, is taken to scale as fl"'. The systematic expansion in terms of 
inverse powers of R is then a matter of some delicacy. In our case the fluctuations 
scale linearly with the large parameter and are non-Gaussian even in the limit 
fi + CO; the fluctuations in van Kampen's master equation expansion become Gaussian 
in the limit of large n. 

Consequently the expansion in N-' is straightforward and gives the FP equation 
directly, rather than through a Mandel transform of the rate equation (1) [13]. We 
should also note (see van Kampen [7] and Kubo et a1 [12]) that the systematic 
expansion of a master equation (ultimately to yield an equation of FP type) and the 
derivations of central limit theorem results in probability theory are intimately con- 
nected; by making our expansion in fi-' and deriving a FP equation we are essentially 
performing the limiting procedure utilised by Jakeman [3] at the end of his calculations. 
Thus a FP formulation incorporates the limiting behaviour from the outset in a 
continuous (rather than discrete) model. 

3. Coherent scattering-the Rayleigh distribution 

In the standard discussion of coherent scattering (see, for example, Pusey [14]) the 
scattered electric field vector E is represented as a sum of randomly phased terms 

where, for convenience, we have assumed a constant and normalised scattering power. 
The statistical properties of the scattered radiation are implicit in those of the phases 
4j( t )  and in the identification of the intensity I (  t )  through 

I (  t )  = E (  t ) & (  t ) * .  

Cn, m ( t ) = (1 ( t ) I ( 0) )/ ( 1)' + 

(11) 
Following and extending the discussion of h s e y  [14] we form 

(12) 
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in the large N limit, in which overcounting corrections tend to zero in the normalised 
correlation function (12). From (10) and (1 1) we see that 

C n . m ( t )  = N - ( " + ~ )  E, (exp[i(4jl( t )  - t )  + 4jz( 1) - 4kz( t )  + * . + 4jn ( t )  - 4 k n  ( 1 )  
Jl...Jtl 

ll.../"4 
41.4, 

+ 4Il(O) - 4ql(o) +. . . + d/,(O) - 4c7,(0))1) (13) 

with the phase factors paired up as shown with n pairs formed from values at time t 
and m pairs with zero time values; there are n ! x m ! ways of forming these pairs. It 
is assumed that the phase terms are statistically independent so that 

(14) 
(exp i ( h ( f )  - 4dt'))) = gdt  - ~ ' ) S W  

g , (O)  = 1. 

Thus terms in which all j ,  = k, and 1, = q, will give a unit contribution. If j ,  # k, ,  
I ,  # qo for r of the n ( m )  values of u ( o )  there will be a contribution of lgl(t)I2' to the 
normalised correlation function. The combinatorial factor corresponding to the number 
of ways of picking such pairs is 

n !  m !  
( n  - r ) !  r !  ( m  - r ) !  r !  

so that the normalised correlation function Cn,m( t )  is given by 

min( n,m \ n ! m !  
C , , , ( t ) = n ! m !  2 Ig1(t)l2' 

r = ~  ( n  - r ) !  ( m  - r ) !  ( r ! )  

as N + m .  This provides us with a generalisation of the Siegert relation [14] to the 
more general correlation function Cfl,m( t ) .  

As is well known [14] the pairing argument given above, specialised to zero time, 
gives the following values for the normalised moments of the intensity distribution: 

( Z f l ) / ( Z y  = n!. (16) 

(This can also be shown directly from (15) by setting Igl(0)12 = 1, identifying C,,,(O) 
as n ! n ~ ! ~ F , ( - n ,  - m ;  1; 1) and employing Gauss' theorem to evaluate the hyper- 
geometric function 2F,  as ( n  + m ) ! / (  n ! m !) [ 151.) The moments (16) are consistent 
with the intensity having a Rayleigh distribution 

1 
P(Z)=-exp(--Z/(z)). 

(1) 

We will now show that a FP description of the intensity statistics is possible which 
in effect encodes the statistical properties of the phase used in the derivation of (15), 
subject to the assumption that Ig,(t)l' decays as a single exponential. We see from (8) 
and (9) that the Rayleigh distribution (17) is a stationary solution P, of the FP equation 

a' a aP 
- ( Z P )  +- [(z - 1) PI = - 
az2  az a t  

where z = I/(Z). Correlation functions such as C, , ( t )  of (13) can be written in terms 
of G(z, t I zO) ,  the propagator or fundamental solution of (18), which can be interpreted 
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as the conditional probability that, given a value zo at time zero, a random variable 
takes a value z at time t .  G(  z, t I zo) satisfies (18) and the initial condition 

G(z, 01 zO) = 6 (  z - zO). (19) 

Given G (  z, t I zo) we can then write 

(z"(t)zm(0))= dz dzo znzrG(z,  tlzo)P,(zo). 

The expansion of G( z, t 1 z,) in terms of the eigenfunctions of the adjoint 

I I  
- d2 d 

dz dz 
2= z,+(l - z ) -  

of the FP operator defined in (18) is a standard procedure (see, for example, the paper 
of Wong [16]) 

p: 

G(z, tIz,)=e-' c L,(z)L,(z,)e(t)'. 
r = O  

Here e( t )  = exp( - t )  and L, is the Laguerre polynomial defined by 

e' d' 
L,(z) =- 7 (e-'zr). 

r !  dz 

From (20) we find that 

(z( ~ ) " z ( O ) ~ )  = e( t ) '  los dz zn e-'L,(z) Iom dz, z r  e-'oL,(z0) 
, 

the integrations over z, zo are standard 

= O  n < r  (22) 

and yield 

n ! m !  
( n  - r ) !  ( m  - r ) ! ( r ! ) 2  

min(n,m) 

(z(  ~ ) " z ( o ) ~ )  = n !  m !  c e( t ) ' .  
r = O  

This result coincides with (15) if the exponentially decaying e( t )  is identified with the 
square modulus of the field correlation function lgl(t)I2, and we recognise that we 
work in the limit of a large number of scatterers (cf the FP treatment of the gamma 
process). We see that the orthogonal polynomials L,( z),  and ultimately the structure 
of the FP operator in (18), encode, through the expansion (21) of the propagator 
G(z, t I zo) and the moment result (22), the combinatorial factors implicit in the assumed 
statistical properties (14) of the phases 4j( t )  in (10). An exponential decay in Igl( r)12 
is consistent (through Doob's theorem [ 171) with E being a complex Gauss-Markov 
process: the Markov property is also implicit in the F P  formulation of a process [5]. 
Should Igl(t)12 not have this simple exponential time dependence (with E no longer 
being a Markov process), the combinatorial arguments leading to (15) carry through 
and an expansion analogous to (21), with e ( ? )  replaced by lgl(t)12, will still hold. 
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However such a conditional probability, which can be expressed more compactly 
through the use of Mehler’s summation as 

where I ,  is a modified Bessel function, can no longer determine the properties of many 
time correlation functions such as (z( t l)z( t , )z(  t 3 ) )  as G(z, t I zo) does for a Markov 
process. As the process is no longer Markov a simple FP description would also not 
be appropriate. 

4. K-distributed noise-a Fokker-Planck description 

We have now seen how the principal ingredients of a K-distributed noise model-the 
large mean population limit of a birth, death and migration process and coherent 
Rayleigh scattering-can each be accommodated in a FP description. It remains to 
fuse the two together. In  doing this we shall be guided at the outset by a formal 
intuition; the close connection between our model and that of Jakeman [3] should 
become apparent later. 

Consider a Rayleigh distributed process z, with a current mean value x, whose 
distribution function is (cf (17)) exp(-z/x)/x. We now take x to be a gamma- 
distributed variable, so that the stationary joint distribution of x, z may be written as 

The marginal distribution of z is now a K distribution: 

dxx”-l  exp(-x) exp(-z/x) = 2zY’*Ky(2&) 

( K ,  is a modified Bessel function of the second kind). It is this integral identity which 
lies at the heart of Jakeman’s model; the implicit factorisation of a K-distributed 
process into a Rayleigh process with a gamma-distributed mean also underpins the 
use of the K model in the analysis of land [ 181 and sea [ 191 clutter. Thus to provide 
a FP description of the K-distributed process z we seek an equation in the variables 
x and z which is of FP form and has P,(x, z )  of (24) as its stationary solution. We 
also require that there be as strong a resemblance as possible between this FP equation 
and those describing the gamma- and Rayleigh-distributed processes ((8) and (18) 
respectively) and that significant contact can be made between our description and 
Jakeman’s model. A FP equation satisfying these criteria is 

1 a a’ a - P(x, 2 ;  t )  = a! - ( X P )  +- [(x - Y - z / x ) P ]  
a t  (ax2 ax 

) =LfP 
dz  

(ii) 

which we see does indeed have (24) as a stationary solution. This feature is in itself 
worthy of comment as it is not generally the case for a FP equation describing the 
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coupled behaviour of two or more random variables to have a stationary solution 
which is accessible to direct quadrature [ 5 ] .  The existence of such a solution allows 
the FP operator 2' to be cast into self-adjoint form through a transformation of the type 

and so ensures the existence of a complete orthonormalised set of eigenfunctions of 
that operator [5]. It is therefore possible, in principle, to expand the fundamental 
solution of (26) in terms of this complete set, just as was done, for example, in (21). 
However, an extension of the analysis of Wong and Thomas [20] indicates that, in 
contrast to the cases considered in the foregoing two sections, it is not possible to 
obtain eigenfunctions of the FP operator in (26) in the form of orthogonal polynomials 
in the variables x and z. Indeed, very little is known about the eigenfunctions and the 
eigenvalue spectrum of two-dimensional operators of this type. Nonetheless, given 
the increasing importance of the K-distributed noise model, analysis of these difficult 
problems should prove worthwhile. Furthermore, as we shall see in the next two 
sections, it is possible to investigate the properties of the FP model by using approximate 
methods and by numerical simulation. 

Before discussing these implications of (26) further we consider a possible physical 
interpretation of the variables z and x, noting that our proposed FP equation is made 
up of terms reminiscent of those occurring in the description of the gamma and Rayleigh 
processes. Thus the term (ii) strongly resembles (18) while (i) is, apart from the 
non-linear coupling in z/x, the FP operator appropriate to the description of a gamma 
process. These observations suggest that z be identified with the intensity of light 
scattered coherently from an illuminated area, containing correlated scatterers whose 
scattering power or cross section is given by x. The factors dl and 93 incorporate, 
through their reciprocals, the differing rates of decorrelation of the scatterers and the 
scattered light into the model. The non-linear coupling between the z and x variables 
through the term z/x is necessary to maintain (24) as the stationary solution of our 
F P  equation. The physical interpretation of this coupling in (ii) as a varying mean 
intensity of the scattering process z is straightforward; the interpretation of the corre- 
sponding non-linear term in (i)  is not as evident as the formal requirement that it be 
present to ensure the correct stationary solution. As we shall see, in the limit that z 
decorrelates much more rapidly than x (as is the case in the physical realisation of 
Jakeman's model) the two processes effectively decouple and the physical interpretation 
of x and z is obvious. The marginal distribution of x derived from (24) is the gamma 
distribution 

lox dz exp(-x)x"-' exp(-z/x) = x" exp(-x) 

identical with that obtained by Jakeman for the intensity resulting from the incoherent 
illumination of a negative binomial distributed population in the limit of large N. 
Contributions to an incoherently scattered intensity do more than count the scatterers 
in the illuminated area so that the total intensity can be identified with N of equation 
(1). This again bears out our interpretation of x as a normalised cross section of 
scatterers in the illuminated area. Thus we have been able to establish, albeit only by 
plausibility arguments, a reasonable connection between the variables z and x of (26) 
and the coherently scattered intensity and the cross section of scatterers in an illumi- 
nated area. 
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5. Correlation in a &distributed process-an approximate analysis 

Having postulated a FP description of a K-distributed random process we will now 
analyse the autocorrelation properties of this process, using a standard technique from 
statistical mechanics (the Mori projection operator method [8,9]) adapted to FP 
dynamics of Ackerson [21]. The result we obtain has the same form as, and is essentially 
identical with, the generalised Siegert relation derived by Jakeman [3]. 

The Mori projection operator method enables us to generate equations of motion 
for correlation functions of a set of variables, by projecting the equations of motion 
of these variables onto their values at some (earlier) time. In our case we chose the 
variables 

6~ = z - dx dz zP,(x, Z)  = z - ( v + 1) lom 
lom 6~ = x - dx dz xP,( X, Z )  = x - ( v + 1). 

The mequation ( 2 6 )  describes the temporal evolution ofthe propagator G(x, z, t /xo ,  z,) 
through 

-- a G - T G  
a t  

subject to the initial condition G(x, z, OIx,, zo) = S(x-x,)S(z-zo). We wish to derive 
equations of motion for the matrix of correlation functions formed from the vector 
+ T =  (6x, 62): 

Here, and subsequently, the angular brackets ( ) denote an average over the stationary 
distribution (24). Each element of the matrix C ( r )  may be written in terms of 
G(x, z, tlx,, zo) (cf (20)); when we write the formal solution of (28) as 

G(x, z, tlx,, z O ) = e x p ( Y t ) 6 ( x - x o ) 6 ( z - z 0 )  

we find, for a typical element 

(Sz(O)Sz( t ) )  = 

which, after successive partial integrations, can be written as 

dx dx, dz dzo GzSz,(exp( Yet )S(x - xo)6( z - z,)) Pm(xo, z,) Jl 
(sz(O)sz(t))= dx dz Pm(x, z)(Sz exp(9r)Sz) 

(30) 

I 
= (62 exp(9't)dz) 

where 

ax 
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is the adjoint of the FP operator in ( 2 6 ) .  Thus an equation of motion for (Sz(O)Sz( t))  
is 

with similar results holding for the other elements of @ ( t ) .  Following the standard 
Mori strategy [8,9] we define an operator P which projects onto the variables Sx and 
SZ 

PA=(A+') - (+t$')-' dT. ( 3 3 )  
Here (&&T) is the zero time value of C( t): 

whose inverse 

-l \ u + 3  

\( v + 1)( v + 2 )  ( v + 1)( v + 2 ) /  

Q is the complement of P, i.e. 

P+ag=O 

the identity operator. We now write 
exp(P t )9  = exp(9t)(P + ~ ) 9  

and decompose exp(9t)  as follows: 

exp(9t)  = exp(QPt)+ dt' exp[L?(t - t ' ) ] P 9  exp(Q9t'). (37) Id 
On incorporating these results into ( 3 2 )  we obtain the following equation of motion 
for @ ( t ) :  

( 3 8 )  
The manipulations leading to ( 3 8 )  are a formal restructuring of the equation of motion 
( 3 2 ) .  A first approximation to the behaviour of the correlation matrix @ ( t )  which is 
exact at short times can be obtained by neglecting the second 'memory' term in ( 3 8 )  
which incorporates those effects of non-linearity not represented in the linearised 
equations making up the first term. Within the context of the diffusive dynamics of 
suspensions, which are described by FP equations analogous to (?6), this 'first cumulant' 
approximation is widely used [ 2 2 , 2 3 ] .  Thus we evaluate (4'2'4) as 

(-&(;+ l)  -B(v+ l )  

and make use of ( 3 5 )  to obtain 

- nc dC 
dt  
_- (39) 
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where fl is the frequency matrix 

- d ( v + 3 )  d 
a=[ (v+2)  a ( v + 2 )  - g ) a  

- -  
(v+2)  (v+2)  

Laplace transformation of (39) and a subsequent inversion yield the transformed 
correlation matrix c ( s ) .  Our principal interest is in the autocorrelation function of 
the process Sz whose transform can be expressed as 

9- (’+ ’ ) +  s( Y + 1)( Y +3) + d- ( Y + 3 ) * )  (41) 
1 

(s - s+)(s - s-) ( ( Y + 2) (Y+2) 
e2w = 

where s+ and s- are roots of the equation 

S 2 + . s [ B  + d( v+3)] / (  v+2)  + spa/( Y+2) = 0 

i.e. 

S*=- {-[a + d( Y +3)] * [[a  +d( v + 3)]2-4da(  v +2)]”2}. (42) 
1 

2(v+2) 

Equation (41) can now be inverted quite readily to express C, , ( t )  as a sum of two 
exponential terms. To make contact with Jakeman’s model we note that the timescale 
for the decay of correlation in the coherent scattering process (characterised by the 
reciprocal of the multiplicative factor 3 in (26)) is much shorter than a typical 
correlation time for fluctuations in the number of scatterers themselves (here charac- 
terised by the reciprocal of d ) .  Thus we should consider the result (41) in the limit 
$33 + 03 for which s+ and s- tend to the values 

S + = - d  

s- = -a/( v + 2 )  
(43) 

which characterise a slow and a fast mode respectively. In this limit we find that 

C,,(t) = ( v +  1) exp(-dt)  + (v+2)( v +  1) exp[-8t/(  v+2)] (44) 
from which C,,(O) = ( v + l ) ( v + 3 ) ,  as we would hope (cf (34)). The first, slowly 
decaying, term can be identified with the number fluctuation term in Jakeman’s 
generalised Siegert relation, while the second rapidly decaying term can be identified 
with the speckle or field correlation term. The amplitudes of these two terms given 
by (44) and Jakeman are identical. This underlines the intimate connection between 
the two models. An alternative approximate analysis, which yields a result equivalent 
to (44), can be performed using the method of adiabatic elimination [5]. This is 
outlined in the appendix. 

6. The numerical simulation of K-distributed noise 

A Fokker-Planck equation such as (23) provides a description of a random process, 
in terms of the propagator G(x, z, t /xo,  zo),  whose probabilistic element is the interpre- 
tation of G(x, z, t (xo,  zo) as a conditional probability. An alternative description of 
such a process is provided by a set of stochastic differential equations (SDE)  which 
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incorporate random noise terms explicitly. The archetypal SDE is the Langevin equation 
familiar from the description of Brownian motion [17]; a set of SDE sufficiently general 
for our purposes is 

Here F, and gu are, in general, non-linear functions of the vector of random variables 
x while J ( t )  are a set of Gaussian white noise random variables with the temporal 
correlation property 

(A(  t ) x (  t ’ ) )  = 26( t - t ’ ) a i J .  (46) 

The gV model the dependence of the fluctuations in the system represented by (45) on 
the configuration of that system. In the standard Langevin model of Brownian motion 
[17], the g ,  are simply constants and (45) is then said to represent a system with 
additive noise, When, in the more general case, g ,  depend explicitly on x (45) represents 
a system with multiplicative noise. 

The equivalence of FP and SDE descriptions of a random process has been discussed 
exhaustively in the literature in several contexts [5,7]. For systems with additive noise 
the connection between the two descriptions is unambiguous and is described clearly 
and concisely in the classic reviews of Chandrasekhar E241 and Wang and Uhlenbeck 
[17]. Rather more controversy has been attached to the interpretation of SDE with 
multiplicative noise and to the identification of their stochastically equivalent FP 
equation. Reference can be made to the review of Lindenberg et af [ 2 5 ]  and the text 
of Gardiner [5 ]  for a thorough discussion of this topic. Here we will adopt without 
further comment the It8 interpretation of the SDE (45) and identify their stochastically 
equivalent FP equation as 

Consistent adherence to ItB’s convention renders any controversy irrelevant. Thus, 
for example, we see by inspection that the single SDE 

d z / d t = ( I - ~ ) + ~ ” ~ f ( t )  (48) 

is stochastically equivalent to the FP equation (14) describing the Rayleigh-distributed 
process z. Similarly the two coupled SDE 

dx/dt  = &( v - x + z/x)  + &1’2x’’2fl( t )  

dz/dt  = a( 1 - z /x )+  93l’*~”’f~( t )  
(49) 

are readily shown to be stochastically equivalent to the FP equation (23). 
The SDE (49) can, on integration, provide us with a possible method for the numerical 

simulation of K-distributed noise. Some care is needed in selecting a suitable method 
for effecting this quadrature. The uncritical application of numerical methods used 
for the integration of ordinary differential equations in this context can result in 
processes corresponding to either the It8 or Stratonovich interpretations of the SDE in 
question, as well as other ‘unidentified intermediate solutions’ [34]. A simple (but 
rather slowly convergent) algorithm which explicitly incorporates the It8 interpretation 
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of (49) is 

x(t+At) = x(t )+  d A t  + (2dx( t )  At)1’2rl+o(Af) 

z ( t + A t ) = z ( t ) + 9  1- -  At+(2%z(t) Ar)1’2r2+o(Ar) ( 3 
where rl and r2 are uncorrelated random numbers drawn from a Gaussian distribution 
of zero mean and unit variance. Equations (50) can be iterated forward in time on a 
computer, taking Ar to be as small as possible, consistent with available time and 
computational power. This will generate trajectories in (x, z )  space which will, on 
average, be distributed in accordance with (24). By sampling z along these trajectories 
and allowing x to evolve subject to (50) we are sampling the marginal distribution of 
z, which we know from (25) to be a K distribution. Speaking loosely, we might say 
that our procedure provides us with a Monte Carlo realisation of this integral representa- 
tion which, as we have already noted, lies at the heart of Jakeman’s model. It is quite 
pleasing to note that, while K, is a ‘special’ function, the proposed method of simulation 
does not itself require the evaluation of anything more recondite than a square root. 

The analysis of the previous section has linked the factors d and 9 with effective 
rates of decay of the number fluctuation and speckle contributions to the autocorrelation 
function of z. In the limit B += CO in which fast fluctuations in z decorrelate in a time 
over which x varies only imperceptibly, the method of simulation proposed can be 
simplified considerably. By averaging (506) over the timescale of the rapid fluctuations 
in z (an average we denote by - )  we obtain 

or 

(f) =1  

which we may now substitute into (50a) to give 

dx/dt  = &( v + 1 - X )  + d”*~”*fI( t )  (51 )  

Equation (5 1 )  can be recognised as the SDE generating gamma-distributed noise, 
(see also the discussion in the appendix). 

which can be implemented on the computer through 

x ( t + A t ) = x ( t ) + & ( v + l  -x( t ) )  At+(2dx(t)  At)’”r+o(At). (52) 

Thus if we generate correlated gamma noise by this method and at each step evaluate 
z from uncorrelated Rayleigh noise of unit mean (obtained most straightforwardly by 
forming i ( r : + r : ) ,  where r l  and rz are defined as in (50)) by multiplying it by the 
current value of x, we again generate a distribution of x and z of the form (24) from 
which K-distributed z can be sampled. In this method the time step A t  chosen for 
the integration need only be small compared with the reciprocal of d; for the more 
general method At has to be small compared with the reciprocal of the larger of d 
and 9. Conversely the more general method should give more flexibility in modelling 
the correlation properties of the simulated noise. 
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The method suggested for the integration of the SDE is undeniably crude, but has 
been widely used in the investigation of physical systems described by SDE with 
multiplicative noise [26,27]. Indeed the numerical integration of such SDE by more 
sophisticated methods is a virtually unexplored subject, although some progress has 
been made recently for the special case of additive noise [28,29]. We note that the 
values of z and x are confined to the positive quadrant (as would be consistent with 
their interpretation as a scattered intensity and a scattering power, respectively), the 
edges of which form a natural boundary across which a point (x, z) cannot pass in 
the course of a simulation. This property is manifest in the SDE (49). Thus, for the z 
variable we see that, as long as x # 0, the value of dz/dt as z --* 0 is positive and so z 
will tend to increase; in particular the amplitude of the random multiplicative noise 
term will vanish as the natural barrier at z=O is approached. Similarly dx/dt is 
positive for z Z 0 ,  x+O, again ensuring that x remains positive. This apparently 
straightforward inclusion of natural boundaries into the formulation of the problem 
is peculiar to systems with multiplicative noise. The incorporation of (‘artificial’) 
barriers into the stochastic simulation of systems with additive noise is not possible 
merely by a modification of the SDE [30] and requires the use of special techniques 
[31]. We note that in the strongly non-Gaussian limit as v--, -1 the integration of the 
SDE (50) is rather delicate and the natural boundary at x = 0 becomes unstable with 
respect to numerical errors. In the long term the resolution of this problem must lie 
in the development of improved algorithms for the numerical integration of SDE; in 
the short term we note that the contracted simulation method based on (52) remains 
stable for -1 < v < 0 and that the natural barrier at x = 0 is reinforced in the set of SDE: 

dx/dt = &[ v + 1 - X( 1 + y )  + Z / X ]  + (&x) ”*fI( t )  

These SDE are stochastically equivalent to a FP equation whose stationary solution is 
x ”  exp[-x(l +y)-z/x],  from which we see that z is still K distributed through 

Some properties of numerically simulated correlated K-distributed noise, generated 
by the integration of Langevin equations and by other methods, are discussed elsewhere 
[32]. Here we merely present a sample of simulated K-distributed noise (figure l) ,  

4 0  I 
2 0  

0 0  5 0  10 0 15 0 20 0 

Figure 1. A sample of numerically simulated correlated K-distributed noise ( Y = -0.4). 
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which can be compared with Rayleigh noise (figure 2) and experimentally detected 
K-distributed noise (figure 3). The last of these was obtained by the illumination by 
laser light of an electrically excited ‘dynamic scattering’ layer of nematic liquid crystal 
[33]. We note the qualitative similarity of figures 1 and 3, in particular the occurrence 
of periods of relative quiescence and of suddenly occurring bursts, features which are 
absent from the sample of simulated correlated Rayleigh noise. 

7. Conclusions 

A Fokker-Planck description of a correlated K-distributed noise process has been set 
up and discussed. The connection between this formulation and Jakeman’s rate- 
equation model has been demonstrated; in particular a simple projection operator 
analysis produces a result equivalent to the generalised Siegert relation decomposing 
the intensity correlation function into a rapidly varying speckle and a slower number 
fluctuation term. Stochastic differential equations equivalent to the Fokker-Planck 
equation have been presented and can be used as the basis of a numerical simulation 
of correlated K-distributed noise. It is hoped that, having cast the description of a 
K-distributed noise process into a standard Fokker-Planck form and identified a 
method for its numerical simulation, it will now be possible to analyse this practically 
important non-Gaussian noise process in greater detail. 

Acknowledgments 

The author has benefited from discussions with Drs E Jakeman, P A Madden and 
P N Pusey. Dr Pusey also provided the experimentally measured K-distributed noise 
shown in figure 3. The helpful suggestions of a referee are also gratefully acknowledged. 

Figure 2. A sample of numerically simulated Rayleigh noise. 

Figure 3. Intensity of light scattered by a turbulent liquid crystal layer whose statistics are 
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Appendix 

The result (44) and the method of simulation (52) are appropriate to the limit in which 
the variable z decorrelates on a timescale over which x changes imperceptibly. In this 
appendix we apply the method of adiabatic elimination to investigate this limit and 
to substantiate the intuitive derivation of (51 ) .  Our treatment closely follows that of 
Gardiner (reference [ 5 ] ,  ch 6),  to which reference can be made for further details of 
the method. 

We consider the FP equation (26), which we can rewrite as 

(aP/at)(x, z, t ) = ( % L , + L , + L , ) P  ('41) 

having set si = 1. Here 

L* = 2 (( 1 - z/ .)) 
ax 

and derive an equation for 

~ ( x ,  t )  = dz P(x, z, t )  I 
in the limit where 93 + 00. 

We identify a solution Fx(z) of 

L1Fx(z) = o  
as 

Fx(z) = ( l / x )  exp(-z/x) 

and define a projection operator through 

dzf(x, z ) .  PAX, z) = Fx(z) 

In particular we note that 

PP(X, z, t )  = FX(z) r (x ,  t ) .  

It is straightforward to show that 

P L ,  = L,$ = O  

and, as 

dzzFx(z )=x  I 
that 

('44) 

PL2P = 0. 
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The results (A8) and (A9) are those essential for the implementation of the adiabatic 
elimination procedure described by Gardiner. By defining 

(A101 

( A l l )  

deriving their coupled equations of motion from (A l )  with (A9) and (AlO), Laplace 
transformation and the subsequent elimination of w we find that (cf Gardiner [ 5 ] ,  e.g. 
(6.6.83)) 

U(X, t )  = F2(z)7r(x, t )  = PP(X, Z, t )  

W(X, t )  = (1 -P)P(x, Z, t )  

sC(s) = { L ,  - B - ’ ( L ~ +  L~)L; ’ [L~+ ( 1  - P)L,])~’(S) + U(O) + O( (‘412) 

where 

C(s) = exp(-st)u(t) dt. 5: 
Thus in the limit B + cc we have 

a 
- T(X, 1 )  = L37r(x, t )  
a t  

the FP equation stochastically equivalent to the SDE (51)  within the It6 interpretation. 
This result allows us to identify the intensity variable z as, in Haken’s terminology 
[35], a silent slave to the scattering power variable x. In this limit we may write the 
propagator (28) as 

G(x, z, t lxo,  zo) = ( U x )  exp(-z/x).rr(x, tlxo) t > O  

t = O  (A14) = 6 (x  - xo) 6 (z  - zo) 

where T(X, t Ixo) satisfies (A13) with the initial condition 

.rr(X,OjXO) =6(x-x,)  

i.e. 

Substitution of (A14) into (30) gives the result (44) in which 93 has been allowed to 
approach infinity. To obtain a solution to higher order in 93-l we must generate 
corrections to (A14) (cf the results of § 6.6.3 in Gardiner’s text) and attempt to solve 
the resulting equations. This, and the equally daunting task of evaluating the memory 
function in (38), will not be pursued here. 
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